from __future__ import annotations
import jax
import jax.numpy as np
from beartype import beartype
from jaxtyping import jaxtyped
from ..eigen_util import (
select_eigenpairs_by_eigenvalue,
validate_eigensystem_input_shape,
)
from ..tree_util import is_shape_leaf
from ..typing import (
Any,
ArrayData,
Data,
DataShape,
HyperParams,
ModuleCallable,
Params,
State,
Tuple,
)
from .basemodule import BaseModule
[docs]
class Eigenvectors(BaseModule):
r"""
Module to compute selected eigenvectors of a symmetric (Hermitian) matrix.
Can be applied over PyTrees of matrices.
The output of this module for a single input matrix is an array where each
column is an eigenvector, with the columns ordered according to the
specified `which` parameter.
See Also
--------
Eigenvalues
Module to compute only eigenvalues.
Eigensystem
Module to compute both eigenvalues and eigenvectors.
jax.numpy.linalg.eigh
JAX function to compute the eigensystem of a symmetric (Hermitian)
matrix, which is used internally by this module.
"""
[docs]
def __init__(
self,
num_eig: int | None = 1,
which: str = "SA",
) -> None:
r"""
Parameters
----------
num_eig
Number of eigenvectors to compute. Must be a positive integer or
None. If None, all eigenvectors are returned. Default is 1.
which
Which eigenvectors to return based on associated eigenvalues,
by default "SA".
Options are:
- 'SA' for smallest algebraic (default)
- 'LA' for largest algebraic
- 'SM' for smallest magnitude
- 'LM' for largest magnitude
- 'EA' for exterior algebraically
- 'EM' for exterior by magnitude
- 'IA' for interior algebraically
- 'IM' for interior by magnitude
For algebraic 'which' options, the eigenvectors are returned in
ascending eigenvalue algebraic order.
For magnitude 'which' options, the eigenvectors are returned in
ascending eigenvalue magnitude order.
"""
if num_eig is not None and (
num_eig <= 0 or not isinstance(num_eig, int)
):
raise ValueError(
f"num_eig must be a positive integer or None, got {num_eig}"
)
if which.lower() not in [
"sa",
"la",
"sm",
"lm",
"ea",
"em",
"ia",
"im",
]:
raise ValueError(
"which must be one of: 'SA', 'LA', 'SM', 'LM', 'EA', 'EM', "
f"'IA', 'IM'. Got: {which}"
)
self.num_eig = num_eig
self.which = which.lower()
@property
def name(self) -> str:
if self.num_eig == 1 and self.which == "sa":
return "Eigenvectors(ground state)"
elif self.num_eig is None:
return f"Eigenvectors(ALL, which={self.which.upper()})"
else:
return (
f"Eigenvectors(num_eig={self.num_eig},"
f" which={self.which.upper()})"
)
[docs]
def is_ready(self) -> bool:
return True
[docs]
def get_num_trainable_floats(self) -> int | None:
return 0
[docs]
def _get_callable(self) -> ModuleCallable:
@jaxtyped(typechecker=beartype)
def get_eigenvectors(data: ArrayData) -> ArrayData:
# compute all eigenvectors over the batch dimension, then vmap
# to select the desired eigenvectors
return jax.vmap(
select_eigenpairs_by_eigenvalue, in_axes=(0, 0, None, None)
)(*np.linalg.eigh(data), self.num_eig, self.which,)[1]
@jaxtyped(typechecker=beartype)
def tree_map_get_eigenvectors(
params: Params,
data: Data,
training: bool,
state: State,
rng: Any,
) -> Tuple[Data, State]:
# tree map over the data PyTree
return (
jax.tree.map(
get_eigenvectors,
data,
),
state,
)
return tree_map_get_eigenvectors
[docs]
def compile(self, rng: Any, input_shape: DataShape) -> None:
# ensure input shape is valid
validate_eigensystem_input_shape(input_shape, self.num_eig)
[docs]
def get_output_shape(self, input_shape: DataShape) -> DataShape:
validate_eigensystem_input_shape(input_shape, self.num_eig)
return jax.tree.map(
lambda s: (
s[0],
self.num_eig if self.num_eig is not None else s[0],
),
input_shape,
is_leaf=is_shape_leaf,
)
[docs]
def get_hyperparameters(self) -> HyperParams:
return {
"num_eig": self.num_eig,
"which": self.which,
}
[docs]
def set_hyperparameters(self, hyperparams: HyperParams) -> None:
super().set_hyperparameters(hyperparams)
[docs]
def get_params(self) -> Params:
return ()
[docs]
def set_params(self, params: Params) -> None:
return