Source code for parametricmatrixmodels.modules.transitionamplitudesum

from __future__ import annotations

import jax
import jax.numpy as np
from beartype import beartype
from jaxtyping import Array, Inexact, jaxtyped

from ..tree_util import is_shape_leaf, is_single_leaf
from ..typing import (
    Any,
    Data,
    DataShape,
    HyperParams,
    ModuleCallable,
    Params,
    State,
    Tuple,
)
from .basemodule import BaseModule


[docs] class TransitionAmplitudeSum(BaseModule): r""" A module that computes the sum of transition amplitudes of trainable observables given an input of state vectors. The output can be centered by subtracting half the operator norm squared of each observable. To produce :math:`q` output values, given a single input of :math:`r` state vectors of size :math:`n` (shape ``(n, r)``), denoted by :math:`v_i`, :math:`i=1, \ldots, r`, this module uses :math:`q\times l` trainable observables :math:`D_{11}, D_{12}, \ldots, D_{1l}, D_{21}, \ldots, D_{ql}` (each of shape ``(n, n)``) to compute the output: .. math:: z_k = \sum_{i,j=1}^r &\left( \sum_{m=1}^l |v_i^H D_{km} v_j|^2\\ &\quad - \frac{1}{2} ||D_{km}||^2_2 \right) for :math:`k=1, \ldots, q`. This is equivalent to .. math:: z_k &= \sum_{m=1}^l \left( \sum_{i,j=1}^r \left( |v_i^H D_{km} v_j|^2 \right)\\ &\quad - \frac{r^2}{2} ||D_{km}||^2_2 \right) where :math:`||\cdot||_2` is the operator 2-norm (largest singular value) so for Hermitian :math:`D`, :math:`||D||_2` is the largest absolute eigenvalue. The :math:`-\frac{1}{2} ||D_{km}||^2_2` term centers the value of each term and can be disabled by setting the ``centered`` parameter to ``False``. .. warning:: This module assumes that the input state vectors are normalized. If they are not, the output values will be scaled by the square of the norm of the input vectors. .. warning:: Even though the math shows that the centering term should be multiplied by :math:`r^2`, in practice this doesn't work well and instead setting the centering term to :math:`\frac{1}{2} ||D_{km}||^2_2` works much better. This non-:math:`r^2` scaling is used here. See Also -------- ExpectationValueSum A similar module that computes the sum of expectation values (instead of transition amplitudes) of trainable observables. LowRankTransitionAmplitudeSum A similar module that uses low-rank observables to reduce the number of trainable parameters. """
[docs] def __init__( self, num_observables: int | None = None, output_size: int | None = None, Ds: Inexact[Array, "q l n n"] | None = None, init_magnitude: float = 1e-2, centered: bool = True, ) -> None: """ Initialize the module. Parameters ---------- num_observables Number of observable matrices, shorthand :math:`l`. output_size Number of output features, shorthand :math:`q`. Ds Optional 4D array of matrices :math:`D_{ql}` that define the observables. Each :math:`D` must be Hermitian. If not provided, the observables will be randomly initialized when the module is compiled. init_magnitude Initial magnitude for the random matrices if Ms is not provided. Default ``1e-2``. centered Whether to center the output by subtracting half the operator norm squared of each observable. Default ``True``. """ if Ds is not None: if not isinstance(Ds, np.ndarray): raise ValueError("Ds must be a numpy array") if Ds.ndim != 4: raise ValueError( f"Ds must be a 4D array, got {Ds.ndim}D array" ) if Ds.shape[2] != Ds.shape[3]: raise ValueError( "The last two dimensions of Ds must be equal" f" (got {Ds.shape[2]} and {Ds.shape[3]})" ) # ensure Ds are Hermitian if not np.allclose(Ds, Ds.conj().transpose((0, 1, 3, 2))): raise ValueError("Ds must be Hermitian matrices") if num_observables is not None and Ds.shape[1] != num_observables: raise ValueError( "If provided, num_observables must match the shape of" f" axis 1 of Ds (got {num_observables} and {Ds.shape[1]})" ) if output_size is not None and Ds.shape[0] != output_size: raise ValueError( "If provided, output_size must match the shape of axis 0" f" of Ds (got {output_size} and {Ds.shape[0]})" ) self.num_observables = ( Ds.shape[1] if Ds is not None else num_observables ) self.output_size = Ds.shape[0] if Ds is not None else output_size self.Ds = Ds self.init_magnitude = init_magnitude self.centered = centered
@property def name(self) -> str: return ( f"TransitionAmplitudeSum(output_size={self.output_size}," f" num_observables={self.num_observables}," f" centered={self.centered})" )
[docs] def is_ready(self) -> bool: return self.Ds is not None
[docs] def get_num_trainable_floats(self) -> int | None: if not self.is_ready(): return None # each matrix D is Hermitian, so it contributes q * l * n^2 floats q, l, n, _ = self.Ds.shape return q * l * n * n
[docs] def _get_callable(self) -> ModuleCallable: # function for a single input, which will be vmapped over for the batch def _single(Ds: np.ndarray, V: np.ndarray) -> np.ndarray: Z = np.einsum("ai,klab,bj->klij", V.conj(), Ds, V) Z = np.sum(np.abs(Z) ** 2, axis=(1, 2, 3)) if self.centered: # TODO: this doesn't use the predicted r^2 scaling, which # doesn't work well in practice, why is this? norm_term = 0.5 * np.sum( np.linalg.norm(Ds, axis=(2, 3), ord=2) ** 2, axis=1 ) return Z - norm_term else: return Z @jaxtyped(typechecker=beartype) def _callable( params: Params, data: Data, training: bool, state: State, rng: Any, ) -> Tuple[Data, State]: Ds = params # force Hermiticity Ds = (Ds + Ds.conj().transpose((0, 1, 3, 2))) / 2.0 # preserve the tree structure of the input # compile will have validated that there is only one leaf, and that # leaf is a 2D array of shape (n, r) outputs = jax.tree.map( lambda x: jax.vmap(_single, in_axes=(None, 0))(Ds, x), data ) return outputs, state return _callable
[docs] def compile(self, rng: Any, input_shape: DataShape) -> None: if self.num_observables is None or self.output_size is None: raise ValueError( "num_observables and output_size must be set before" " compiling the module" ) n = self.Ds.shape[2] if self.Ds is not None else None valid, leaf = is_single_leaf( input_shape, ndim=2, shape=(n, None), is_leaf=is_shape_leaf ) if not valid: raise ValueError( "Input shape must be a PyTree with a single leaf consisting " "of a 2D array with leading dimension size matching the " f"observable matrices. Got input shape: {input_shape}" ) # otherwise, initialize the matrices n, _ = leaf rng_Dreal, rng_Dimag = jax.random.split(rng, 2) # initialize Ds self.Ds = self.init_magnitude * ( jax.random.normal( rng_Dreal, ( self.output_size, self.num_observables, n, n, ), dtype=np.complex64, ) + 1j * jax.random.normal( rng_Dimag, ( self.output_size, self.num_observables, n, n, ), dtype=np.complex64, ) ) # ensure the Ds are Hermitian self.Ds = (self.Ds + self.Ds.conj().transpose((0, 1, 3, 2))) / 2.0
[docs] def get_output_shape(self, input_shape: DataShape) -> DataShape: n = self.Ds.shape[2] if self.Ds is not None else None valid, _ = is_single_leaf( input_shape, ndim=2, shape=(n, None), is_leaf=is_shape_leaf ) if not valid: raise ValueError( "Input shape must be a PyTree with a single leaf consisting " "of a 2D array with leading dimension size matching the " f"observable matrices. Got input shape: {input_shape}" ) # preserve the tree structure of the input return jax.tree.map( lambda x: (self.output_size,), input_shape, is_leaf=is_shape_leaf )
[docs] def get_hyperparameters(self) -> HyperParams: return { "num_observables": self.num_observables, "output_size": self.output_size, "init_magnitude": self.init_magnitude, "centered": self.centered, }
[docs] def set_hyperparameters(self, hyperparams: HyperParams) -> None: if self.Ds is not None: raise ValueError( "Cannot set hyperparameters after the module has parameters" ) super().set_hyperparameters(hyperparams)
[docs] def get_params(self) -> Params: return self.Ds
[docs] def set_params(self, params: Params) -> None: if not isinstance(params, np.ndarray): raise ValueError("params must be an array") if params.ndim != 4: raise ValueError( f"Ds must be a 4D array, got {params.ndim}D array" ) _, _, matrix_size, _ = params.shape if params.shape != ( self.output_size, self.num_observables, matrix_size, matrix_size, ): raise ValueError( "Ds must be a 4D array of shape (output_size," " num_observables, matrix_size, matrix_size)" f" [({self.output_size}, {self.num_observables}," f" {matrix_size}, {matrix_size})], got {params.shape}" ) # ensure Ds are Hermitian if not np.allclose(params, params.conj().transpose((0, 1, 3, 2))): raise ValueError("Ds must be Hermitian matrices") self.Ds = params