BaseModule#

class BaseModule[source]#

Bases: object

Base class for all Modules. Custom modules should inherit from this class.

Methods that must be overridden by subclasses#

__init__

BaseModule constructor, must be overridden by subclasses.

is_ready

Return True if the module is initialized and ready for training or inference.

_get_callable

Returns a jax.jit-able and jax.grad-able callable that represents the module's forward pass.

compile

Compile the module to be used with the given input shape.

get_output_shape

Get the output shape of the module given the input shape.

get_hyperparameters

Get the hyperparameters of the module.

get_params

Get the current trainable parameters of the module.

set_params

Set the trainable parameters of the module.

BaseModule.__init__()[source]#

BaseModule constructor, must be overridden by subclasses.

All modules must be able to be initialized without any arguments in order for Model saving and loading to work correctly.

__init__ can take optional parameters, but all aspects of the module must be able to be set by set_hyperparameters, set_params, and set_state.

Always raises NotImplementedError when called on BaseModule s.

BaseModule is not meant to be instantiated directly.

BaseModule.is_ready()[source]#

Return True if the module is initialized and ready for training or inference.

Return type:

bool

Returns:

True if the module is ready, False otherwise.

Raises:

NotImplementedError – If the method is not implemented in the subclass.

BaseModule._get_callable()[source]#

Returns a jax.jit-able and jax.grad-able callable that represents the module’s forward pass.

This method must be implemented by all subclasses and must return a jax-jit-able and jax-grad-able callable in the form of

module_callable(
    params: tuple[np.ndarray, ...],
    input_NF: np.ndarray[num_samples, num_features],
    training: bool,
    state: tuple[np.ndarray, ...],
    rng: Any
) -> (
        output_NF: np.ndarray[num_samples, num_output_features],
        new_state: tuple[np.ndarray, ...]
    )

That is, all hyperparameters are traced out and the callable depends explicitly only on a tuple of parameter jax.numpy arrays, the input array, the training flag, a state tuple of jax.numpy arrays, and a JAX rng key.

The training flag will be traced out, so it doesn’t need to be jittable

Return type:

Callable[[tuple[Array, ...], Array, bool, tuple[Array, ...], Any], tuple[Array, tuple[Array, ...]]]

Returns:

A callable that takes the module’s parameters, input data, training flag, state, and rng key and returns the output data and new state.

Raises:

NotImplementedError – If the method is not implemented in the subclass.

See also

__call__

Calls the module with the current parameters and given input, state, and rng.

BaseModule.compile(rng, input_shape)[source]#

Compile the module to be used with the given input shape.

This method initializes the module’s parameters and state based on the input shape and random key.

This is needed since Model s are built before the input data is given, so before training or inference can be done, the module needs to be compiled and each module passes its output shape to the next module’s compile method.

The RNG key is used to initialize random parameters, if needed.

This is not used to trace or jit the module’s callable, that is done automatically later.

Parameters:
  • rng (Any) – JAX random key.

  • input_shape (tuple[int, ...]) – Shape of the input data, e.g. (num_features,).

Raises:

NotImplementedError – If the method is not implemented in the subclass.

Return type:

None

BaseModule.get_output_shape(input_shape)[source]#

Get the output shape of the module given the input shape.

Parameters:

input_shape (tuple[int, ...]) – Shape of the input data, e.g. (num_features,).

Return type:

tuple[int, ...]

Returns:

Shape of the output data, e.g. (num_output_features,).

Raises:

NotImplementedError – If the method is not implemented in the subclass.

BaseModule.get_hyperparameters()[source]#

Get the hyperparameters of the module.

Hyperparameters are used to configure the module and are not trainable. They can be set via set_hyperparameters.

Return type:

dict[str, Any]

Returns:

Dictionary containing the hyperparameters of the module.

BaseModule.get_params()[source]#

Get the current trainable parameters of the module. If the module has no trainable parameters, this method should return an empty tuple.

Return type:

tuple[Array, ...]

Returns:

Tuple of numpy arrays representing the module’s parameters.

Raises:

NotImplementedError – If the method is not implemented in the subclass.

BaseModule.set_params(params)[source]#

Set the trainable parameters of the module.

Parameters:

params (tuple[Array, ...]) – Tuple of numpy arrays representing the new parameters.

Raises:

NotImplementedError – If the method is not implemented in the subclass.

Return type:

None

Methods with default implementations#

name

Returns the name of the module, unless overridden, this is the class name.

__repr__

Returns a string representation of the module.

__call__

Call the module with the current parameters and given input, state, and rng.

set_hyperparameters

Set the hyperparameters of the module.

get_num_trainable_floats

Returns the number of trainable floats in the module.

get_state

Get the current state of the module.

set_state

Set the state of the module.

set_precision

Set the precision of the module parameters and state.

astype

Convenience wrapper to set_precision using the dtype argument, returns self.

serialize

Serialize the module to a dictionary.

deserialize

Deserialize the module from a dictionary.

BaseModule.name()[source]#

Returns the name of the module, unless overridden, this is the class name.

Return type:

str

Returns:

Name of the module.

BaseModule.__repr__()[source]#

Returns a string representation of the module. Unless overridden, this includes the module name, number of trainable floats (if any), and whether the module is initialized (ready) or not.

Return type:

str

Returns:

String representation of the module.

BaseModule.__call__(input_NF, training=False, state=(), rng=None)[source]#

Call the module with the current parameters and given input, state, and rng.

Parameters:
  • input_NF (Array) – Input array of shape (num_samples, num_features).

  • training (bool) – Whether the module is in training mode, by default False.

  • state (tuple[Array, ...]) – State of the module, by default ().

  • rng (Any) – JAX random key, by default None.

Return type:

tuple[Array, tuple[Array, ...]]

Returns:

Output array of shape (num_samples, num_output_features) and new state.

Raises:

ValueError – If the module is not ready (i.e., compile() has not been called).

See also

_get_callable

Returns a callable that can be used to compute the output and new state given the parameters, input, training flag, state, and rng.

BaseModule.set_hyperparameters(hyperparameters)[source]#

Set the hyperparameters of the module.

Hyperparameters are used to configure the module and are not trainable. They can be set via this method.

The default implementation uses setattr to set the hyperparameters as attributes of the class instance.

Parameters:

hyperparameters (dict[str, Any]) – Dictionary containing the hyperparameters to set.

Raises:

TypeError – If hyperparameters is not a dictionary.

Return type:

None

BaseModule.get_num_trainable_floats()[source]#

Returns the number of trainable floats in the module. If the module does not have trainable parameters, returns 0. If the module is not ready, returns None.

Return type:

int | None

Returns:

Number of trainable floats in the module, or None if the module is not ready.

BaseModule.get_state()[source]#

Get the current state of the module.

States are used to store “memory” or other information that is not passed between modules, is not trainable, but may be updated during either training or inference. e.g. batch normalization state.

The state is optional, in which case this method should return the empty tuple.

Return type:

tuple[Array, ...]

Returns:

Tuple of numpy arrays representing the module’s state.

BaseModule.set_state(state)[source]#

Set the state of the module.

This method is optional.

Parameters:

state (tuple[Array, ...]) – Tuple of numpy arrays representing the new state.

Return type:

None

BaseModule.set_precision(prec)[source]#

Set the precision of the module parameters and state.

Parameters:

prec (dtype | str | int) – Precision to set for the module parameters. Valid options are: For 32-bit precision (all options are equivalent) np.float32, np.complex64, "float32", "complex64", "single", "f32", "c64", 32. For 64-bit precision (all options are equivalent) np.float64, np.complex128, "float64", "complex128", "double", "f64", "c128", 64.

Raises:
  • ValueError – If the precision is invalid or if 64-bit precision is requested but JAX_ENABLE_X64 is not set.

  • RuntimeError – If the module is not ready (i.e., compile() has not been called).

Return type:

None

See also

astype

Convenience wrapper to set_precision using the dtype argument, returns self.

BaseModule.astype(dtype)[source]#

Convenience wrapper to set_precision using the dtype argument, returns self.

Parameters:

dtype (dtype | str) – Precision to set for the module parameters. Valid options are: For 32-bit precision (all options are equivalent) np.float32, np.complex64, "float32", "complex64", "single", "f32", "c64", 32 For 64-bit precision (all options are equivalent) np.float64, np.complex128, "float64", "complex128", "double", "f64", "c128", 64

Return type:

BaseModule

Returns:

BaseModule – The module itself, with updated precision.

Raises:
  • ValueError – If the precision is invalid or if 64-bit precision is requested but JAX_ENABLE_X64 is not set.

  • RuntimeError – If the module is not ready (i.e., compile() has not been called).

See also

set_precision

Sets the precision of the module parameters and state.

BaseModule.serialize()[source]#

Serialize the module to a dictionary.

This method returns a dictionary representation of the module, including its parameters and state.

The default implementation serializes the module’s name, hyperparameters, trainable parameters, and state via a simple dictionary.

This only works if the module’s hyperparameters are auto-serializable. This includes basic types as well as numpy arrays.

Return type:

dict[str, Any]

Returns:

Dictionary containing the serialized module data.

BaseModule.deserialize(data)[source]#

Deserialize the module from a dictionary.

This method sets the module’s parameters and state based on the provided dictionary.

The default implementation expects the dictionary to contain the module’s name, trainable parameters, and state.

Parameters:

data (dict[str, Any]) – Dictionary containing the serialized module data.

Raises:

ValueError – If the serialized data does not contain the expected keys or if the version of the serialized data is not compatible with with the current package version.

Return type:

None