BaseModule
#
- class BaseModule[source]#
Bases:
object
Base class for all Modules. Custom modules should inherit from this class.
Methods that must be overridden by subclasses#
BaseModule constructor, must be overridden by subclasses. |
|
Return True if the module is initialized and ready for training or inference. |
|
Returns a |
|
Compile the module to be used with the given input shape. |
|
Get the output shape of the module given the input shape. |
|
Get the hyperparameters of the module. |
|
Get the current trainable parameters of the module. |
|
Set the trainable parameters of the module. |
- BaseModule.__init__()[source]#
BaseModule constructor, must be overridden by subclasses.
All modules must be able to be initialized without any arguments in order for Model saving and loading to work correctly.
__init__
can take optional parameters, but all aspects of the module must be able to be set byset_hyperparameters
,set_params
, andset_state
.Always raises
NotImplementedError
when called onBaseModule
s.BaseModule
is not meant to be instantiated directly.
- BaseModule.is_ready()[source]#
Return True if the module is initialized and ready for training or inference.
- Return type:
- Returns:
True
if the module is ready,False
otherwise.- Raises:
NotImplementedError – If the method is not implemented in the subclass.
- BaseModule._get_callable()[source]#
Returns a
jax.jit
-able andjax.grad
-able callable that represents the module’s forward pass.This method must be implemented by all subclasses and must return a
jax-jit
-able andjax-grad
-able callable in the form ofmodule_callable( params: tuple[np.ndarray, ...], input_NF: np.ndarray[num_samples, num_features], training: bool, state: tuple[np.ndarray, ...], rng: Any ) -> ( output_NF: np.ndarray[num_samples, num_output_features], new_state: tuple[np.ndarray, ...] )
That is, all hyperparameters are traced out and the callable depends explicitly only on a
tuple
of parameterjax.numpy
arrays, the input array, the training flag, a statetuple
ofjax.numpy
arrays, and a JAX rng key.The training flag will be traced out, so it doesn’t need to be jittable
- Return type:
Callable
[[tuple
[Array
,...
],Array
,bool
,tuple
[Array
,...
],Any
],tuple
[Array
,tuple
[Array
,...
]]]- Returns:
A callable that takes the module’s parameters, input data, training flag, state, and rng key and returns the output data and new state.
- Raises:
NotImplementedError – If the method is not implemented in the subclass.
See also
__call__
Calls the module with the current parameters and given input, state, and rng.
- BaseModule.compile(rng, input_shape)[source]#
Compile the module to be used with the given input shape.
This method initializes the module’s parameters and state based on the input shape and random key.
This is needed since
Model
s are built before the input data is given, so before training or inference can be done, the module needs to be compiled and each module passes its output shape to the next module’scompile
method.The RNG key is used to initialize random parameters, if needed.
This is not used to trace or jit the module’s callable, that is done automatically later.
- BaseModule.get_output_shape(input_shape)[source]#
Get the output shape of the module given the input shape.
- BaseModule.get_hyperparameters()[source]#
Get the hyperparameters of the module.
Hyperparameters are used to configure the module and are not trainable. They can be set via set_hyperparameters.
- BaseModule.get_params()[source]#
Get the current trainable parameters of the module. If the module has no trainable parameters, this method should return an empty tuple.
- Return type:
- Returns:
Tuple of numpy arrays representing the module’s parameters.
- Raises:
NotImplementedError – If the method is not implemented in the subclass.
Methods with default implementations#
Returns the name of the module, unless overridden, this is the class name. |
|
Returns a string representation of the module. |
|
Call the module with the current parameters and given input, state, and rng. |
|
Set the hyperparameters of the module. |
|
Returns the number of trainable floats in the module. |
|
Get the current state of the module. |
|
Set the state of the module. |
|
Set the precision of the module parameters and state. |
|
Convenience wrapper to set_precision using the dtype argument, returns self. |
|
Serialize the module to a dictionary. |
|
Deserialize the module from a dictionary. |
- BaseModule.name()[source]#
Returns the name of the module, unless overridden, this is the class name.
- Return type:
- Returns:
Name of the module.
- BaseModule.__repr__()[source]#
Returns a string representation of the module. Unless overridden, this includes the module name, number of trainable floats (if any), and whether the module is initialized (ready) or not.
- Return type:
- Returns:
String representation of the module.
- BaseModule.__call__(input_NF, training=False, state=(), rng=None)[source]#
Call the module with the current parameters and given input, state, and rng.
- Parameters:
- Return type:
- Returns:
Output array of shape (num_samples, num_output_features) and new state.
- Raises:
ValueError – If the module is not ready (i.e., compile() has not been called).
See also
_get_callable
Returns a callable that can be used to compute the output and new state given the parameters, input, training flag, state, and rng.
- BaseModule.set_hyperparameters(hyperparameters)[source]#
Set the hyperparameters of the module.
Hyperparameters are used to configure the module and are not trainable. They can be set via this method.
The default implementation uses setattr to set the hyperparameters as attributes of the class instance.
- BaseModule.get_num_trainable_floats()[source]#
Returns the number of trainable floats in the module. If the module does not have trainable parameters, returns
0
. If the module is not ready, returnsNone
.
- BaseModule.get_state()[source]#
Get the current state of the module.
States are used to store “memory” or other information that is not passed between modules, is not trainable, but may be updated during either training or inference. e.g. batch normalization state.
The state is optional, in which case this method should return the empty tuple.
- BaseModule.set_precision(prec)[source]#
Set the precision of the module parameters and state.
- Parameters:
prec (
dtype
|str
|int
) – Precision to set for the module parameters. Valid options are: For 32-bit precision (all options are equivalent)np.float32
,np.complex64
,"float32"
,"complex64"
,"single"
,"f32"
,"c64"
,32
. For 64-bit precision (all options are equivalent)np.float64
,np.complex128
,"float64"
,"complex128"
,"double"
,"f64"
,"c128"
,64
.- Raises:
ValueError – If the precision is invalid or if 64-bit precision is requested but
JAX_ENABLE_X64
is not set.RuntimeError – If the module is not ready (i.e., compile() has not been called).
- Return type:
See also
astype
Convenience wrapper to set_precision using the dtype argument, returns self.
- BaseModule.astype(dtype)[source]#
Convenience wrapper to set_precision using the dtype argument, returns self.
- Parameters:
dtype (
dtype
|str
) – Precision to set for the module parameters. Valid options are: For 32-bit precision (all options are equivalent)np.float32
,np.complex64
,"float32"
,"complex64"
,"single"
,"f32"
,"c64"
,32
For 64-bit precision (all options are equivalent)np.float64
,np.complex128
,"float64"
,"complex128"
,"double"
,"f64"
,"c128"
,64
- Return type:
- Returns:
BaseModule – The module itself, with updated precision.
- Raises:
ValueError – If the precision is invalid or if 64-bit precision is requested but
JAX_ENABLE_X64
is not set.RuntimeError – If the module is not ready (i.e., compile() has not been called).
See also
set_precision
Sets the precision of the module parameters and state.
- BaseModule.serialize()[source]#
Serialize the module to a dictionary.
This method returns a dictionary representation of the module, including its parameters and state.
The default implementation serializes the module’s name, hyperparameters, trainable parameters, and state via a simple dictionary.
This only works if the module’s hyperparameters are auto-serializable. This includes basic types as well as numpy arrays.
- BaseModule.deserialize(data)[source]#
Deserialize the module from a dictionary.
This method sets the module’s parameters and state based on the provided dictionary.
The default implementation expects the dictionary to contain the module’s name, trainable parameters, and state.
- Parameters:
data (
dict
[str
,Any
]) – Dictionary containing the serialized module data.- Raises:
ValueError – If the serialized data does not contain the expected keys or if the version of the serialized data is not compatible with with the current package version.
- Return type: