LowRankAffineObservablePMM#

parametricmatrixmodels.modules.LowRankAffineObservablePMM

class LowRankAffineObservablePMM(matrix_size=None, primary_rank=None, num_eig=None, which=None, smoothing=None, affine_bias_matrix=True, num_secondaries=1, secondary_rank=None, output_size=None, centered=True, bias_term=True, lambdaMs=None, uMs=None, lambdaDs=None, uDs=None, b=None, init_magnitude=0.01)[source]#

Bases: MultiModule

LowRankAffineObservablePMM is a module that implements a general regression model via the affine observable Parametric Matrix Model (PMM) with low-rank trainable matrices using four primitive modules combined in a MultiModule: a LowRankAffineHermitianMatrix module followed by an Eigenvectors module followed by a LowrankTransitionAmplitudeSum module followed optionally by a Bias module.

The Affine Observable PMM (AOPMM) is described in [1] and is summarized as follows:

Given input features \(x_1, \ldots, x_p\), construct the Hermitian matrix that is affine in these features as

\[M(x) = M_0 + \sum_{i=1}^p x_i M_i\]

where \(M_0, \ldots, M_p\) are trainable Hermitian matrices. An optional smoothing term \(s C\) parameterized by the smoothing hyperparameter \(s\) can be added to smooth the eigenvalues and eigenvectors of \(M(x)\). The matrix \(C\) is equal to the imaginary unit times the sum of all commutators of the \(M_i\).

Then, take the leading \(r\) eigenvectors (by default corresponding to the largest magnitude eigenvalues if there is no smoothing, or the smallest algebraic if there is smoothing) of \(M(x)\) and compute the sum of the transition amplitudes of these eigenvectors with trainable Hermitian observable matrices (secondaries) \(D_{ql}\) to form the output vector \(z\) with \(q\) components as

\[z_k = \sum_{m=1}^l \left( \left[\sum_{i,j=1}^r |v_i^H D_{km} v_j|^2 \right] - \frac{r^2}{2} ||D_{km}||^2_2 \right)\]

where \(||\cdot||_2\) is the operator 2-norm (largest singular value) so for Hermitian \(D\), \(||D||_2\) is the largest absolute eigenvalue.

The \(-\frac{1}{2} ||D_{km}||^2_2\) term centers the value of each term and can be disabled by setting the centered parameter to False.

Finally, an optional trainable bias term \(b_k\) can be added to each component.

In this module, the trainable Hermitian matrices, both \(M_i\) and \(D_{km}\), are parametrized in low-rank form by sums of rank-1 terms constructed from outer products of complex vectors. This reduces the number of trainable parameters.

Warning

Even though the math shows that the centering term should be multiplied by \(r^2\), in practice this doesn’t work well and instead setting the centering term to \(\frac{1}{2} ||D_{km}||^2_2\) works much better. This non-\(r^2\) scaling is used here.

See also

LowRankAffineHermitianMatrix

Module that constructs the affine Hermitian matrix \(M(x)\) from low-rank trainable Hermitian matrices \(M_i\) and input features.

Eigenvectors

Module that computes the eigenvectors of a matrix.

LowRankTransitionAmplitudeSum

Module that computes the sum of transition amplitudes of eigenvectors with trainable low-rank observable matrices.

Bias

Module that adds a trainable bias term to the output.

MultiModule

Module that combines multiple modules in sequence.

AffineObservablePMM

Full-rank version of this module.

References

__init__(matrix_size=None, primary_rank=None, num_eig=None, which=None, smoothing=None, affine_bias_matrix=True, num_secondaries=1, secondary_rank=None, output_size=None, centered=True, bias_term=True, lambdaMs=None, uMs=None, lambdaDs=None, uDs=None, b=None, init_magnitude=0.01)[source]#

Initialize the module.

Parameters:
  • matrix_size (int) – Size of the trainable matrices, shorthand \(n\).

  • primary_rank (int) – Rank of the trainable Hermitian matrices \(M_i\).

  • num_eig (int) – Number of eigenvectors to use in the transition amplitude calculation, shorthand \(r\).

  • which (str) – Which eigenvectors to use based on eigenvalue. Options are: - ‘SA’ for smallest algebraic (default with smoothing) - ‘LA’ for largest algebraic - ‘SM’ for smallest magnitude - ‘LM’ for largest magnitude (default without smoothing) - ‘EA’ for exterior algebraically - ‘EM’ for exterior by magnitude - ‘IA’ for interior algebraically - ‘IM’ for interior by magnitude

  • smoothing (float) – Optional smoothing parameter for the affine matrix. Set to None/0.0 to disable smoothing. Default is None/0.0 (no smoothing).

  • affine_bias_matrix (bool) – If True, include the bias term \(M_0\) in the affine matrix. Default is True.

  • num_secondaries (int) – Number of secondary observable matrices \(D_{km}\) per output component. Shorthand \(l\). Default is 1.

  • secondary_rank (int) – Rank of the trainable Hermitian observable matrices \(D_{km}\).

  • output_size (int) – Size of the output vector, shorthand \(q\).

  • centered (bool) – If True, include the centering term in the transition amplitude sum. Default is True.

  • bias_term (bool) – If True, include a trainable bias term \(b_k\) in the output. Default is True.

  • lambdaMs (Array) – Optional array of shape (input_size+1, primary_rank) (if affine_bias_matrix is True) or (input_size, primary_rank) (if bias_term is False), containing the lambda_k^i real coefficients used to construct the low-rank \(M_i\) matrices. If not provided, the coefficients will be initialized randomly when the module is compiled. Default is None (random initialization).

  • uMs (Array) – Optional array of shape (input_size+1, primary_rank, matrix_size) (if affine_bias_matrix is True) or (input_size, primary_rank, matrix_size) (if affine_bias_matrix is False), containing the complex vectors which parameterize the low-rank \(M_i\) Hermitian matrices. If not provided, the vectors will be initialized randomly when the module is compiled. Default is None (random initialization).

  • lambdaDs (Array) – Optional array of shape (output_size, num_secondaries, secondary_rank) containing the lambda_k^m real coefficients used to construct the low-rank \(D_{km}\) observable matrices. If not provided, the coefficients will be initialized randomly when the module is compiled. Default is None (random initialization).

  • uDs (Array) – Optional array of shape (output_size, num_secondaries, secondary_rank, matrix_size) containing the complex vectors which parameterize the low-rank \(D_{km}\) Hermitian observable matrices. If not provided, the vectors will be initialized randomly when the module is compiled. Default is None (random initialization).

  • b (Array) – Optional array of shape (output_size,) containing the bias terms \(b_k\). If not provided, the bias terms will be randomly initialized when the module is compiled. Default is None (random initialization).

  • init_magnitude (float) – Initial magnitude for the random initialization. Default is 1e-2.

Warning

When using smoothing, the which options involving magnitude should be avoided, as the smoothing only guarantees that eigenvalues near each other algebraically are smoothed, not across the spectrum.

__call__

Call the module with the current parameters and given input, state, and rng.

_get_callable

Returns a jax.jit-able and jax.grad-able callable that represents the module's forward pass.

astype

Convenience wrapper to set_precision using the dtype argument, returns self.

compile

Compile the module to be used with the given input shape.

deserialize

Deserialize the module from a dictionary.

get_hyperparameters

Get the hyperparameters of the module.

get_num_trainable_floats

Returns the number of trainable floats in the module.

get_output_shape

Get the output shape of the module given the input shape.

get_params

Get the current trainable parameters of the module.

get_state

Get the current state of the module.

is_ready

Return True if the module is initialized and ready for training or inference.

name

Returns the name of the module, unless overridden, this is the class name.

reset

serialize

Serialize the module to a dictionary.

set_hyperparameters

Set the hyperparameters of the module.

set_params

Set the trainable parameters of the module.

set_precision

Set the precision of the module parameters and state.

set_state

Set the state of the module.

__call__(input_NF, training=False, state=(), rng=None)#

Call the module with the current parameters and given input, state, and rng.

Parameters:
  • input_NF (Array) – Input array of shape (num_samples, num_features).

  • training (bool) – Whether the module is in training mode, by default False.

  • state (tuple[Array, ...]) – State of the module, by default ().

  • rng (Any) – JAX random key, by default None.

Return type:

tuple[Array, tuple[Array, ...]]

Returns:

Output array of shape (num_samples, num_output_features) and new state.

Raises:

ValueError – If the module is not ready (i.e., compile() has not been called).

See also

_get_callable

Returns a callable that can be used to compute the output and new state given the parameters, input, training flag, state, and rng.

_get_callable()#

Returns a jax.jit-able and jax.grad-able callable that represents the module’s forward pass.

This method must be implemented by all subclasses and must return a jax-jit-able and jax-grad-able callable in the form of

module_callable(
    params: tuple[np.ndarray, ...],
    input_NF: np.ndarray[num_samples, num_features],
    training: bool,
    state: tuple[np.ndarray, ...],
    rng: Any
) -> (
        output_NF: np.ndarray[num_samples, num_output_features],
        new_state: tuple[np.ndarray, ...]
    )

That is, all hyperparameters are traced out and the callable depends explicitly only on a tuple of parameter jax.numpy arrays, the input array, the training flag, a state tuple of jax.numpy arrays, and a JAX rng key.

The training flag will be traced out, so it doesn’t need to be jittable

Return type:

Callable

Returns:

A callable that takes the module’s parameters, input data, training flag, state, and rng key and returns the output data and new state.

Raises:

NotImplementedError – If the method is not implemented in the subclass.

See also

__call__

Calls the module with the current parameters and given input, state, and rng.

astype(dtype)#

Convenience wrapper to set_precision using the dtype argument, returns self.

Parameters:

dtype (dtype | str) – Precision to set for the module parameters. Valid options are: For 32-bit precision (all options are equivalent) np.float32, np.complex64, "float32", "complex64", "single", "f32", "c64", 32 For 64-bit precision (all options are equivalent) np.float64, np.complex128, "float64", "complex128", "double", "f64", "c128", 64

Return type:

BaseModule

Returns:

BaseModule – The module itself, with updated precision.

Raises:
  • ValueError – If the precision is invalid or if 64-bit precision is requested but JAX_ENABLE_X64 is not set.

  • RuntimeError – If the module is not ready (i.e., compile() has not been called).

See also

set_precision

Sets the precision of the module parameters and state.

compile(rng, input_shape)#

Compile the module to be used with the given input shape.

This method initializes the module’s parameters and state based on the input shape and random key.

This is needed since Model s are built before the input data is given, so before training or inference can be done, the module needs to be compiled and each module passes its output shape to the next module’s compile method.

The RNG key is used to initialize random parameters, if needed.

This is not used to trace or jit the module’s callable, that is done automatically later.

Parameters:
  • rng (Any) – JAX random key.

  • input_shape (tuple[int, ...]) – Shape of the input data, e.g. (num_features,).

Raises:

NotImplementedError – If the method is not implemented in the subclass.

Return type:

None

deserialize(data)[source]#

Deserialize the module from a dictionary.

This method sets the module’s parameters and state based on the provided dictionary.

The default implementation expects the dictionary to contain the module’s name, trainable parameters, and state.

Parameters:

data (dict[str, Any]) – Dictionary containing the serialized module data.

Raises:

ValueError – If the serialized data does not contain the expected keys or if the version of the serialized data is not compatible with with the current package version.

Return type:

None

get_hyperparameters()[source]#

Get the hyperparameters of the module.

Hyperparameters are used to configure the module and are not trainable. They can be set via set_hyperparameters.

Return type:

dict[str, Any]

Returns:

Dictionary containing the hyperparameters of the module.

get_num_trainable_floats()#

Returns the number of trainable floats in the module. If the module does not have trainable parameters, returns 0. If the module is not ready, returns None.

Return type:

int | None

Returns:

Number of trainable floats in the module, or None if the module is not ready.

get_output_shape(input_shape)#

Get the output shape of the module given the input shape.

Parameters:

input_shape (tuple[int, ...]) – Shape of the input data, e.g. (num_features,).

Return type:

tuple[int, ...]

Returns:

Shape of the output data, e.g. (num_output_features,).

Raises:

NotImplementedError – If the method is not implemented in the subclass.

get_params()#

Get the current trainable parameters of the module. If the module has no trainable parameters, this method should return an empty tuple.

Return type:

tuple[Array, ...]

Returns:

Tuple of numpy arrays representing the module’s parameters.

Raises:

NotImplementedError – If the method is not implemented in the subclass.

get_state()#

Get the current state of the module.

States are used to store “memory” or other information that is not passed between modules, is not trainable, but may be updated during either training or inference. e.g. batch normalization state.

The state is optional, in which case this method should return the empty tuple.

Return type:

tuple[Array, ...]

Returns:

Tuple of numpy arrays representing the module’s state.

is_ready()#

Return True if the module is initialized and ready for training or inference.

Return type:

bool

Returns:

True if the module is ready, False otherwise.

Raises:

NotImplementedError – If the method is not implemented in the subclass.

name()[source]#

Returns the name of the module, unless overridden, this is the class name.

Return type:

str

Returns:

Name of the module.

reset()#
Return type:

None

serialize()[source]#

Serialize the module to a dictionary.

This method returns a dictionary representation of the module, including its parameters and state.

The default implementation serializes the module’s name, hyperparameters, trainable parameters, and state via a simple dictionary.

This only works if the module’s hyperparameters are auto-serializable. This includes basic types as well as numpy arrays.

Return type:

dict[str, Any]

Returns:

Dictionary containing the serialized module data.

set_hyperparameters(hyperparams)[source]#

Set the hyperparameters of the module.

Hyperparameters are used to configure the module and are not trainable. They can be set via this method.

The default implementation uses setattr to set the hyperparameters as attributes of the class instance.

Parameters:

hyperparameters – Dictionary containing the hyperparameters to set.

Raises:

TypeError – If hyperparameters is not a dictionary.

Return type:

None

set_params(params)#

Set the trainable parameters of the module.

Parameters:

params (tuple[Array, ...]) – Tuple of numpy arrays representing the new parameters.

Raises:

NotImplementedError – If the method is not implemented in the subclass.

Return type:

None

set_precision(prec)#

Set the precision of the module parameters and state.

Parameters:

prec (dtype | str | int) – Precision to set for the module parameters. Valid options are: For 32-bit precision (all options are equivalent) np.float32, np.complex64, "float32", "complex64", "single", "f32", "c64", 32. For 64-bit precision (all options are equivalent) np.float64, np.complex128, "float64", "complex128", "double", "f64", "c128", 64.

Raises:
  • ValueError – If the precision is invalid or if 64-bit precision is requested but JAX_ENABLE_X64 is not set.

  • RuntimeError – If the module is not ready (i.e., compile() has not been called).

Return type:

None

See also

astype

Convenience wrapper to set_precision using the dtype argument, returns self.

set_state(state)#

Set the state of the module.

This method is optional.

Parameters:

state (tuple[Array, ...]) – Tuple of numpy arrays representing the new state.

Return type:

None